醫藥翻譯網

搜索:
生物化學翻譯

生物化學翻譯生物化學翻譯的質量和速度

質量是企業生存和發展的根本,為確保生物化學翻譯的準確性,醫藥翻譯網的項目全過程如下:

一、龐大生物化學翻譯團隊保證各類生物化學翻譯稿件均由專業人士擔任。

二、規範化的生物化學翻譯流程 。從獲得資料的開始到交稿全過程進行質量的全麵控製,並同時做到高效率,快速度的原則。

三、及時組建若幹翻譯小組,分析各項要求,統一專業詞匯,確定語言風格,譯文格式要求。

四、生物化學翻譯均有嚴格的語言和專業技術雙重校對。從初稿的完成到統稿,從校對到最終審核定稿,甚至詞匯間的細微差別也力求精確。

五、不間斷的進行招聘,充足的人力資源不斷匯集生物化學翻譯界的精英和高手。不斷對內部及外聘生物化學翻譯人員進行係統的再培訓工程。

六、曾 6 小時翻譯 4.5 萬字的速度客戶所需。

七、有效溝通。

生物化學翻譯大項目組協調各方麵工作:

高級項目經理

項目經理(Project Manager)

翻譯(Translation

編輯 (Editing

校對(Profreading

質量控製(Quality Assurance

 

生物化學翻譯技術配備

一、製作部配備有先進的計算機處理設備,多台掃描儀、打印機、光盤刻錄機、寬帶網絡接入、公司擁有獨立的服務器,各項領先技術確保所有文件係統化處理和全球同步傳輸。

二、全球多語係統保證提供病原生物學電子文檔翻譯件。Windows 係列各種操作平台,Office 係列軟件的熟練運用。PhotoshopFreehandFramemakerPagemakerAcrobat

CorelDarw 等軟件製圖排版及設計,充分滿足客戶對稿件各種格式的要求。

三、不斷探索最新的技術成果並運用到生物化學翻譯中,從而提高生物化學翻譯質量和效率。

四、翻譯軟件 TRADOSTeam Version)充分發揮生物化學翻譯項目的管理和分析能力。

 

生物化學翻譯網專業生物化學翻譯組竭誠為您提供及時、準確、規範的服務,讓溝通更順暢!

運用化學的理論和方法研究生命物質的邊緣學科。其任務主要是了解生物的化學組成、結構及生命過程中各種化學變化。從早期對生物總體組成的研究,進展到對各種組織和細胞成分的精確分析。目前正在運用諸如光譜分析、同位素標記、X射線衍射、電子顯微鏡以及其他物理學、化學技術,對重要的生物大分子(如蛋白質、核酸等)進行分析,以期說明這些生物大分子的多種多樣的功能與它們特定的結構關係。

醫學生物化學翻譯


對一些常見病和嚴重危害人類健康的疾病的生化問題進行研究,有助於進行預防、診斷和治療。如血清中肌酸激酶同工酶的電泳圖譜用於診斷冠心病、轉氨酶用於肝病診斷、澱粉酶用於胰腺炎診斷等。在治療方麵,磺胺藥物的發現開辟了利用抗代謝物作為化療藥物的新領域,如5-氟尿嘧啶用於治療腫瘤。青黴素的發現開創了抗生素化療藥物的新時代,再加上各種疫苗的普遍應用,使很多嚴重危害人類健康的傳染病得到控製或基本被消滅。生物化學翻譯的理論和方法與臨床實踐的結合,產生了醫學生化的許多領域,如:研究生理功能失調與代謝紊亂的病理生物化學翻譯,以酶的活性、激素的作用與代謝途徑為中心的生化藥理學,與器官移植和疫苗研製有關的免疫生化等。

生物化學翻譯若以不同的生物為對象,可分為動物生

 

生物化學翻譯

化、植物生化、微生物生化、昆蟲生化等。若以生物體的不同組織或過程為研究對象,則可分為肌肉生化、神經生化、免疫生化、生物力能學等。因研究的物質不同,又可分為蛋白質化學、核酸化學、酶學等分支。研究各種天然物質的化學稱為生物有機化學。研究各種無機物的生物功能的學科則稱為生物無機化學或無機生物化學翻譯。60年代以來,生物化學翻譯與其他學科融合產生了一些邊緣學科如生化藥理學、古生物化學翻譯、化學生態學等;或按應用領域不同,分為醫學生化、農業生化、工業生化、營養生化等。

 

生物化學翻譯主要研究生物體分子結構與功能、物質代謝與調節以及遺傳信息傳遞的分子基礎與調控規律。

生物化學翻譯組成

除了水和無機鹽之外,活細胞的有機物主要由碳原子與氫、氧、氮、磷、硫等結合組成,分為大分子和小分子兩大類。前者包括蛋白質、核酸、多糖和以結合狀態存在的脂質;後者有維生素、激素、各種代謝中間物以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,還有各種次生代謝物,如萜類、生物堿、毒素、抗生素等。

雖然對生物體組成的鑒定是生物化學翻譯發展初期的特點,但直到今天,新物質仍不斷在發現。如陸續發現的幹擾素、環核苷一磷酸、鈣調蛋白、粘連蛋白、外源凝集素等,已成為重要的研究課題。有的簡單的分子,如作為代謝調節物的果糖-26-二磷酸是1980年才發現的。另一方麵,早已熟知的化合物也會發現新的功能,20世紀初發現的肉堿,50年代才知道是一種生長因子,而到60年代又了解到是生物氧化的一種載體。多年來被認為是分解產物的腐胺和屍胺,與精胺、亞精胺等多胺被發現有多種生理功能,如參與核酸和蛋白質合成的調節,對DNA超螺旋起穩定作用以及調節細胞分化等。

代謝調節控製

新陳代謝由合成代謝和分解代謝組成。前者是生物體從環境中取得物質,轉化為體內新的物質的過程,也叫同化作用;後者是生物體內的原有物質轉化為環境中的物質,也叫異化作用。同化和異化的過程都由一係列中間步驟組成。中間代謝就是研究其中的化學途徑的。如糖元、脂肪和蛋白質的異化是各自通過不同的途徑分解成葡萄糖、脂肪酸和氨基酸,然後再氧化生成乙酰輔酶A,進入三羧酸循環,最後生成二氧化碳。

在物質代謝的過程中還伴隨有能量的變化。生物體內機械能、化學能、熱能以及光、電等能量的相互轉化和變化稱為能量代謝,此過程中ATP起著中心的作用。

新陳代謝是在生物體的調節控製之下有條不紊地進行的。這種調控有3種途徑:①通過代謝物的誘導或阻遏作用控製酶的合成。這是在轉錄水平的調控,如乳糖誘導乳糖操縱子合成有關的酶;②通過激素與靶細胞的作用,引發一係列生化過程,如環腺苷酸激活的蛋白激酶通過磷酰化反應對糖代謝的調控;③效應物通過別構效應直接影響酶的活性,如終點產物對代謝途徑第一個酶的反饋抑製。生物體內絕大多數調節過程是通過別構效應實現的。

結構與功能

生物大分子的多種多樣功能與它們特定的結構有密切關係。蛋白質的主要功能有催化、運輸和貯存、機械支持、運動、免疫防護、接受和傳遞信息、調節代謝和基因表達等。由於結構分析技術的進展,使人們能在分子水平上深入研究它們的各種功能。酶的催化原理的研究是這方麵突出的例子。蛋白質分子的結構分4個層次,其中二級和三級結構間還可有超二級結構,三、四級結構之間可有結構域。結構域是個較緊密的具有特殊功能的區域,連結各結構域之間的肽鏈有一定的活動餘地,允許各結構域之間有某種程度的相對運動。蛋白質的側鏈更是無時無刻不在快速運動之中。蛋白質分子內部的運動性是它們執行各種功能的重要基礎。

80年代初出現的蛋白質工程,通過改變蛋白質的結構基因,獲得在指定部位經過改造的蛋白質分子。這一技術不僅為研究蛋白質的結構與功能的關係提供了新的途徑;而且也開辟了按一定要求合成具有特定功能的、新的蛋白質的廣闊前景。

核酸的結構與功能的研究為闡明基因的本質,了解生物體遺傳信息的流動作出了貢獻。堿基配對是核酸分子相互作用的主要形式,這是核酸作為信息分子的結構基礎。脫氧核糖核酸的雙螺旋結構有不同的構象,J.D.沃森和F.H.C.克裏克發現的是B-結構的右手螺旋,後來又發現了稱為 Z-結構的左手螺旋。DNA還有超螺旋結構。這些不同的構象均有其功能上的意義。核糖核酸包括信使核糖核酸(mRNA)、轉移核糖核酸(tRNA)和核蛋白體核糖核酸(rRNA),它們在蛋白質生物合成中起著重要作用。新近發現個別的RNA有酶的功能。

基因表達的調節控製是分子遺傳學研究的一個中心問題,也是核酸的結構與功能研究的一個重要內容。對於原核生物的基因調控已有不少的了解;真核生物基因的調控正從多方麵探討。如異染色質化與染色質活化;DNA的構象變化與化學修飾;DNA上調節序列如加強子和調製子的作用;RNA加工以及轉譯過程中的調控等。

葡萄糖結構式

葡萄糖結構式

生物體的糖類物質包括多糖、寡糖和單糖。在多糖中,纖維素和甲殼素是植物和動物的結構物質,澱粉和糖元等是貯存的營養物質。單糖是生物體能量的主要來源。寡糖在結構和功能上的重要性在20世紀70年代才開始為人們所認識。寡糖和蛋白質或脂質可以形成糖蛋白、蛋白聚糖和糖脂。由於糖鏈結構的複雜性,使它們具有很大的信息容量,對於細胞專一地識別某些物質並進行相互作用而影響細胞的代謝具有重要作用。從發展趨勢看,糖類將與蛋白質、核酸、酶並列而成為生物化學翻譯的4大研究對象。

生物大分子的化學結構一經測定,就可在實驗室中進行人工合成。生物大分子及其類似物的人工合成有助於了解它們的結構與功能的關係。有些類似物由於具有更高的生物活性而可能具有應用價值。通過 DNA化學合成而得到的人工基因可應用於基因工程而得到具有重要功能的蛋白質及其類似物。

酶學研究

生物體內幾乎所有的化學反應都是酶催化的。酶的作用具有催化效率高、專一性強等特點。這些特點取

生物化學翻譯實驗室

生物化學翻譯實驗室

決於酶的結構。酶的結構與功能的關係、反應動力學及作用機製、酶活性的調節控製等是酶學研究的基本內容。通過X射線晶體學分析、化學修飾和動力學等多種途徑的研究,一些具有代表性的酶的作用原理已經比較清楚。70年代發展起來的親和標記試劑和自殺底物等專一性的不可逆抑製劑已成為探討酶的活性部位的有效工具。多酶係統中各種酶的協同作用,酶與蛋白質、核酸等生物大分子的相互作用以及應用蛋白質工程研究酶的結構與功能是酶學研究的幾個新的方向。酶與人類生活和生產活動關係十分密切,因此酶在工農業生產、國防和醫學上的應用一直受到廣泛的重視。

生物膜和生物力

生物膜主要由脂質和蛋白質組成,一般也含有糖類,其基本結構可用流動鑲嵌模型來表示,即脂質分子形成雙層膜,膜蛋白以不同程度與脂質相互作用並可側向移動。生物膜與能量轉換、物質與信息的傳送、細胞的分化與分裂、神經傳導、免疫反應等都有密切關係,是生物化學翻譯中一個活躍的研究領域。

以能量轉換為例,在生物氧化中,代謝物通過呼吸鏈的電子傳遞而被氧化,產生的能量通過氧化磷酸化作用而貯存於高能化合物ATP中,以供應肌肉收縮及其他耗能反應的需要。線粒體內膜就是呼吸鏈氧化磷酸化酶係的所在部位,在細胞內發揮著電站作用。在光合作用中通過光合磷酸化而生成 ATP則是在葉綠體膜中進行的。以上這些研究構成了生物力能學的主要內容。

激素與維生素

激素是新陳代謝的重要調節因子。激素係統和神經係統構成生物體兩種主要通訊係統,二者之間又有密切的聯係。70年代以來,激素的研究範圍日益擴大。如發現腸胃道和神經係統的細胞也能分泌激素;一些生長因子、神經遞質等也納入了激素類物質中。許多激素的化學結構已經測定,它們主要是多肽和甾體化合物。一些激素的作用原理也有所了解,有些是改變膜的通透性,有些是激活細胞的酶係,還有些是影響基因的表達。維生素對代謝也有重要影響,可分水溶性與脂溶性兩大類。它們大多是酶的輔基或輔酶,與生物體的健康有密切關係。



本文關鍵字:生物化學翻譯  生物學翻譯  化學翻譯  物理學翻譯  
SCI論文學術翻譯服務SCI論文翻譯 醫藥翻譯相關文件下載

版權所有 © Copyright © 2013-2015 醫學翻譯-醫藥翻譯-醫學翻譯--醫藥翻譯網  粵ICP備05051533號  安全聯盟